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The power approximation to the consis tency flow curve of a rotat ing disk is considered;  a 
c r i te r ia l  relat ionship for the rheodynamic res i s tance  of the disk is then deduced. Exper i -  
mental data obtained in solutions of sodium carboxymethyl  cellulose (CMC) for C = 0-1.5% 
agree  closely with the proposed general izat ion.  

The prac t ica l  use of the Tomes  effect in open or closed hydraul ic  sys tems  [1-3] requires  the der iva-  
tion of a c r i te r ia l  relat ionship for the rheodynamie res i s t ance  of a rotating disk, the lat ter  being an in- 
herent  par t  of any bladed machine.  

When studying the rheodynamic res i s t ance  of disks rotating in a non-Newtonian liquid it is des i rable  
to use the power approximation to the consis tency flow curve [4] for a rotat ing disk, 

P = k"V ~'. (1) 

Using the Cochran solution [5] we may write the integrated mean values of the s t r e s s  and shear  
s t ra in  ra te  in the form 

4 M 
P = - - .  ; V: l ,29o)  V ' ~ .  (2) 

3 R 3 

The rheodynamic res i s t ance  coefficient of a rotating disk wetted on both sides is determined,  af ter  
allowing for Eqs. (1) and (2), by 

2 M  31-~"A ~" 

CM ~ 1 _  9oPR 5 Re,,,o.5 (3) 
2 

The general ized Reynolds number Re'" in Eq. (3) is descr ibed in the following way: 

R e " =  Re"2 �9 (4) 

Re"= PR2c~ (5) 
k" 

Some pre l iminary  resu l t s  of an experimental  ver if icat ion of the proposed general izat ion of the rheo-  
dynamic res i s t ance  of a rotat ing disk were presented in [6]. In the presen t  investigation a detailed exper i -  
mental  ver i f ica t ion of Eq. (3) was ca r r i ed  out in a "smooth d i sk - -  shell" sys tem filled with aqueous solu- 
tions of sodium carboxymethyl  cellulose (CMC) with a mass  concentrat ion of C = 0-1.5% at t = 25~ The 
experiments  in the "disk- in-shel l"  apparatus embraced the following ranges  of charac te r i s t ic  geometr ica l  
p a r a m e t e r s :  disk d iameters  d = 120-128.5 mm with a relat ive width of b /R  = 0.025-0.055, relat ive axial 
and radial  gaps, respect ively ,  S/R = 0.0659-0.487 and a / R  = 0.011-0.083. The casing or  shell of the ap- 
para tus  limiting the space around the rotat ing disk was immersed  in a U10 thermosta t  which thermal ly  
stabil ized the liquid under tes t .  The mechanical  drive was a de motor  providing a smooth variat ion be-  
tween n = 5 and 130 rps .  The torque developed by the disk was measured  with a thin-walled {hollow) ten- 
somet r i e  shaft and a m e r c u r y  amalgam current  take-off .  The e r r o r  in measur ing  the torque and the rate  
of revolution was no g r ea t e r  than 1% [7, 8]. 
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Fig. 1~ Flow curves  of CMC solutions in the loga-  
r i th rn icanamorphos i s :  1) C = 0.1%; 2) 0.25; 3) 0.5; 
4) 0.75; 5) 1.0; 6) 1.5. (4M/3R3) �9 10 -2, N/m2; ,_ov~ 
�9 1 0  -4 ' sec-1. 
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Fig. 2. Rheological pa r ame te r s  as functions of the 
mass  concentrat ion of the CMC solutions:  1 )approx i -  
mat ion of the consis tency flow curves by re fe rence  to 
experimental  data for a rotating disk; 2) cor re la t ion  
based on Eqs.  (10) and (11); 3) based on v i scomet r ie  
data obtained by the capil lary method,  k .  102, N ' s e c  
/m2; K"'I0 3, N'secn"/m 2. 
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The rheological  constants n" and k" were determined by solving the power equation (1) with due al-  
lowance for (2) by re fe rence  to the experimental ly  measured  cha rac te r i s t i c  M - f(aD for a smooth disk 
128,5 mm in d iameter  rotat ing in CMC solutions in an unbounded space (mass concentrat ions C = 0-1.5%). 
For  test ing the s ta t ionary  liquid in free space the shell of the apparatus was taken away, and the disk, 
supported in cant i lever  fashion on a ver t ical  axis, was i m m e r s e d  in a special  tank, the specified t empera -  
tu re  being maintained in this tank by the circulat ion of liquid through a TS-24 thermos ta t ,  

The rec t i l inear  anamorphosis  of the consis tency flow curves  for a rotating disk in the range of 
shear  velocit ies under considerat ion (Fig. 1) enables us to derive a power approximation with a mean-  
square  e r r o r  as low as 1% and to obtain sa t i s fac tory  corre la t ion  for n" and k" with respec t  to the concen- 
t r a t ion  of the CMC solutions (Fig. 2). 

Thus, the experimental  data presented here  indicate the absence of any marked change in the mode 
of secondary  flow induced by the disk; the fact that the experimental  range of measurement  of the M = f(~) 
charac te r i s t i c  lies close to Re'~ indicates that centrifugal flow is taking place around the rotating disk 
during the experiments  [9]. 

Since the ranges  of var ia t ion of the axial gaps and the Reynolds numbers  (Re = 9.104-4 �9 10 ~) studied 
sat isfy the conditions charac te r i s t i c  of the existence of separa te  boundary layers  on the s ta tor  and ro tor  
[10] (this mode of flow being real ized,  for example, in centrifugal pumps [11]), Eq. (3) enables us to 
genera l ize  the rheodynamic res i s tance  of a disk rotating in a shell (Fig. 3). 

For  the range of CMC concentrat ions and the charac te r i s t i c  geometr ica l  pa ramete r s  of the disk 
- -  shell sys tem studied we obtain a unique value of the cr i t ical  Reynolds number,  

~e "2 
Re. ~__ Re"' -~ (3--5). 105. (4 ~) 

For  Re'" > Re'~ the uniqueness of Eq. (3) is disrupted, and it is converted into a family of s t ra ight  
lines with a p a r a m e t e r  n" qualitatively repeating the well-known general izat ion of Metzner and Reed for 
tubes [4]. 

For  the laminar  and turbulent modes of flow around a rotat ing disk in a shell we obtain an approxi-  
mation for the experimental  data (based on ~1200 experimental  points) with mean-square  e r r o r s  of ~1.5 
and ~6%, respect ive ly .  

For  Re'" < 3.105 , S/R = 0.066-.0,49: 

CM = 31-n" {1.97 [lg (S/R + 0.224) ~- 2.04]} ,~" (6) 
Re.~O,5 

for Re'" > 7 -105, S/R = 0.066-0.49: 

CM = 0'338exp lg(1--n ' )[ Ig(S/R-~ 2"37)--iO'i65] 
Re,,,0.2+*.sa~-n") (7) 

These experiments  once more  demonst ra te  the unusual ability of CiviC solutions (already descr ibed 
in [12]) to suppress  turbulent pulsations.  We see f rom Fig. 3 that even for C = 1.5%, the CM = f(Re") 
curve for Re'" > Ee'~ very  closely approaches the limiting asymptote  corresponding to laminar  flow around 
the object.  Hence, for C > 1.5% in" < 0.81), Re'" > R e ,  and S/R = 0.066-0.49 the res i s tance  coefficient 
CM should be determined f rom Eq. (6), and not Eq. (7), which was obtained as a resul t  of a general izat ion 
of the experimental  data in the range C = 0-1.5% in" = 1-0.81). 

For  n" = 1 and k" - #, Eq. (3) t r ans fo rms  into the ordinary  relat ionship for a Newtonian liquid in 
the case of laminar  flow around a rotating disk [5], while (6) and (7) t r ans fo rm into the corresponding 

�9 equations descr ibing the change in the moment of the res i s tance  coeff icientof  the disk as a function of the 
l~eynolds number  and the axial gap [13]. 

It follows f rom Eqs. (6) and (7) that a relat ive change in the axial gap S/R has a s imi la r  effect on 
CM for both Newtonian and non-Newtonian liquids. This is apparently a consequence of the retention of 
the separa te  boundary layers  on the s ta tor  and ro tor  in the range of S/R values considered,  even in the 
case of a disk rotat ing in a non-Newtonian liquid. 

These experimental  data regarding  the rheodynamie res i s tance  of a rotat ing disk in CMC solutions 
with C = 0-1.5% in an unlimited space agree  closely with the solution of Mitschka, which on making allow- 
ance for  [15] reduces  to 
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3.87 
C M -  peO. s , (8) 

*x m 

2 

_ 1-~56. n - _ j  
Rein= ( P - ~ )  13 n+' . (9) 

Using the Mitschka solution [14] and a s suming  that  the CM = f i r e ' )  and C M = ~(Re m) re la t ionships  
a r e  invar ian t  with r e s p e c t  to p, R, and ~0, we may  es tab l i sh  a re la t ionship  between the rheologieal  p a r a m -  

e t e r s  n", k" and n, k. It thus follows f r o m  (3), (4), (5), and (8), (9) that  

n" = 2 n  (10) 
l + n  

n 
1 ~  _ l - - n  

k" = k (.~.-) 'r 10.2 2(l+n) " (11) 

The  values of n" and k" calculated f r o m  Eqs.  (10) and (11) ag ree  c lose ly  with d i rec t  m e a s u r e m e n t  
(Fig. 2). 

We have thus established the following. 

1. The generalfzed Reynolds number (4) is a criterion of rheodynamie similarity, and for the flow 
of a non-Newionian liquid around a rotating disk uniquely establishes a crisis at Re'~ - (3-5) �9 105. 

2. The rheodynamie resistance coefficients of disks rotating both in the free space of a non-New- 
tonian liquid and in a shell (easing) with S/R = 0.066-0~ a/R = 0.01-0.08, and b/R = 0.02-0.06 may be 
calculated from the corresponding equations (3), (6), and (7) using the values of n", k" or n, k (n', k'), 
determined by viseometric measurements on solutions of high polymers. 

P = f(r); V = f(~) 
T 

n, n ' ,  n" andk ,  k ' ,  k" 

R 
r_o 

M 
Re = pwR2~ -1 
# 

CM 
A 

Re" ,  Re'" 
C 
t 
d 
b 
S a n d  a 
12 

Re'~ 
R e m  

N O T A T I O N  

a r e  the genera l i zed  va r i ab l e s  of the cons is tency flow equations for  a rota t ing disk; 
is the s h e a r  s t r e s s  at the wall,  N/m2; 
is the s h e a r  s t r a i n  r a t e ,  s ee - i ;  
a r e  the rheologica l  p a r a m e t e r s  de te rmined  for  pa r t s  of the flow curves  which a r e  
l i nea r  in the logar i thmic  anamorphos i s ;  
ts  the disk rad ius ,  m; 
is  the angu la r  f requency of rotat ion,  s ee - l ;  
is  the momen t  of r e s i s t a n c e  of the rota t ing disk wetted f rom one side, N - m ;  
is the Reynolds number ;  
is  the v i scos i ty ,  N ' s e c / m 2 ;  
is  the rheodynamic  r e s i s t a n c e  coeff icient  of the ro ta t ing  disk; 
is  the coeff icient  in the equation for  de te rmin ing  the hydrodynamic  r e s i s t a n c e  of a 
ro ta t ing  disk in a Newtonian liquid (A = 3.87 for  a disk rota t ing in the f ree  space  of 
a s t a t iona ry  liquid); 
a r e  the gene ra l i zed  Reynolds numbers  de te rmined  by Eqs.  (4) and (5); 
is the m a s s  concentra t ion;  
is the t e m p e r a t u r e ,  ~ 
is  the disk d i a m e t e r ,  m; 
is  the disk width (thickness),  m; 
a r e  the axia l  and rad ia l  gaps  between the disk and the shell  wal ls ,  r e spec t ive ly ,  m; 
is  the number  of revolut ions ,  rps ;  
is the c r i t i ca l  Reynolds number ;  
is the genera l i zed  Reynolds number  de r ived  f r o m  Eq. (9). 
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